Symplectic Geometric Algorithm for Quaternion Kinematical Differential Equation
نویسندگان
چکیده
Solving quaternion kinematical differential equations is one of the most significant problems in the automation, navigation, aerospace and aeronautics literatures. Most existing approaches for this problem neither preserve the norm of quaternions nor avoid errors accumulated in the sense of long term time. We present symplectic geometric algorithms to deal with the quaternion kinematical differential equation by modeling its time-invariant and time-varying versions with Hamiltonian systems by adopting a three-step strategy. Firstly, a generalized Euler’s formula for the autonomous quaternion kinematical differential equation are proved and used to construct symplectic single-step transition operators via the centered implicit Euler scheme for autonomous Hamiltonian system. Secondly, the symplecitiy, orthogonality and invertibility of the symplectic transition operators are proved rigorously. Finally, the main results obtained are generalized to design symplectic geometric algorithm for the time-varying quaternion kinematical differential equation which is a non-autonomous and nonlinear Hamiltonian system essentially. Our novel algorithms have simple algorithmic structures and low time complexity of computation, which are easy to be implemented with real-time techniques. The correctness and efficiencies of the proposed algorithms are verified and validated via numerical simulations.
منابع مشابه
Iterative algorithm for the generalized $(P,Q)$-reflexive solution of a quaternion matrix equation with $j$-conjugate of the unknowns
In the present paper, we propose an iterative algorithm for solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} {underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$. By this iterative algorithm, the solvability of the problem can be determined automatically. When the matrix equation is consistent over...
متن کاملDual Quaternion Variational Integrator for Rigid Body Dynamic Simulation
We introduce a symplectic dual quaternion variational integrator(DQVI) for simulating single rigid body motion in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group variational integrator is used to conserve the geometric structure, energy and momentum of the system during the simulation. The combination of these two becomes the first L...
متن کاملQuaternionic Soliton Equations from Hamiltonian Curve Flows in Hp
A bi-Hamiltonian hierarchy of quaternion soliton equations is derived from geometric non-stretching flows of curves in the quaternionic projective space HPn. The derivation adapts the method and results in recent work by one of us on the Hamiltonian structure of non-stretching curve flows in Riemannian symmetric spaces M = G/H by viewing HPn ≃ U(n + 1, H)/U(1, H)× U(n, H) ≃ Sp(n + 1)/Sp(1)× Sp(...
متن کاملMathematisches Forschungsinstitut Oberwolfach Geometric Numerical Integration
The subject of this workshop was numerical methods that preserve geometric properties of the flow of an ordinary or partial differential equation. This was complemented by the question as to how structure preservation affects the long-time behaviour of numerical methods. Mathematics Subject Classification (2000): 65xx. Introduction by the Organisers The subject of this workshop was numerical me...
متن کاملA fast structure-preserving method for computing the singular value decomposition of quaternion matrices
In this paper we propose a fast structure-preserving algorithm for computing the singular value decomposition of quaternion matrices. The algorithm is based on the structurepreserving bidiagonalization of the real counterpart for quaternion matrices by applying orthogonal JRS-symplectic matrices. The algorithm is efficient and numerically stable. 2014 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.07109 شماره
صفحات -
تاریخ انتشار 2016